

3. From the editor

4. It’s Alive, Game Maker 5
What’s new with Game Maker 5!

6. Development Tutorials
6. Good Programming Part 2.

12. 10 Steps to Great Game Design
12. Game Design: Players Needs.

A look at Xceptions 3D Dll vs Freegadgets 3D Engine.

30. GM 3D war

First interview with That 3D Dude “Freegadgets”

28. In the spot light

2

32. A look at GMDM’s top 3D programs used for 3D game
 design. Covers 3D Studio Max, Maya, and Lightwave.

32. Tools of the Trade

The action packed “Aliens Attack On Colony”
the fast, fast food joint “Ore no Ryom”
and the strange “Jetz Rampage”

36. Game Reviews

Contents

Morphosis Enter-Active
Morphosis Games
© John Hempstead

http://mea.gmcommunity.com/mea
morphosisgames@aol.com

Credits
This is the Second issue, bigger than the first!

7. Make a 3D Ship rotate in Amin8or

16. What’s a Good Game?

35. Dragon Script Lite: NEW GML Code Editor!

Other contributions to GMDM © 2003
include and get a big THANKS!

Mark Overmars
Chris Spicer

Allen Cheung
DT

 C.E. Forman
 Curtis LeMay

Simon Danaher

By: Morphosis

Ctrl L- “Full Screen”
Ctrl +- “Zoom In” - Ctrl - - “Zoom Out”
Home - “First Page” - End - “Last Page”
Arrow Keys - “Page Down or Up”
V - “Text Select Tool”
H- “Hand Tool”

Edited, Designed, Written and
Produced by:

John Hempstead-Morphosis
Morphosis Enter-Active (MEA)

© 2003 MEA

All content in GMDM are © to their
author or creator. Pleas ask

permission before any duplication of
any material here is done, it’s just

the nice thing to do.

Look! More Room here for you so help out!
Email me for information. Thanx

http://www.gamemaker.nl/
http://galileo.spaceports.com/~morphea/
http://galileo.spaceports.com/~morphea/

3

Welcome to the 2nd issue of Game Makers Data Magazine. I am very excited about this magazine and it’s
success. Reports from Mr. Overmars state that in a few weeks the magazine was downloaded over 2000 times.
That’s great but since it’s getting a large audience, who many of them noticed my errors writing this magazine,
forced me into being more aware of my mistakes. I did rush to put the 1st issue together and rush to complete
this 2nd issue. Because of this, I have decided that the magazine will not be released every month as intended,
but every two months. That way I could plan better, check mistakes, give people who can’t make the deadlines
more time, and make better decisions of what is in the magazine. This may change if I do get people who are
dedicated to their work. I don’t think a two month wait is that bad, but it’s not what I want.

I would like to thank Mark for his decision to place this on his site, it’s an honor. I would also like to thank all
that have read the first issue and had made comments on it. I hope you continue to enjoy this magazine and
remain looking forward into the next and future issues.

Morphosis
John

From the editor

News Flash

Mark Overmars has done it again, it seems like
he will never stop because improvement is
important to him. He shows this with the most
recent development of Game Maker 5.0.

This is exciting to all game makers, as other
releases were. The big change that may have
shocked GM users was the release of Game
Maker 4.0 due to it’s almost completely new
appearance and power. Game Maker 5.0 was
thought by some to only be small minor
improvements and bugs that were in GM 4+ to
be fixed. But it is not just a few changes, it’s
many changes and many new additions. Make
sure you read my review of this greatness.

For more information about Game Maker:
http://www.gamemaker.nl/

Morphosis: John Hempstead

Morphosis: John Hempstead

Game Maker 5.0 Beta Released

Game Makers Data Magazine Help

If you are interested in writing for the GMDM please feel free to drop me an email. From there I can send you
some guidlines to follow. I am open to almost anything that deals with the developement of games, web,
programming, multimedia, and art. Even some humor can be thrown in that may make us smile. So don’t wait
on your ideas, send questions to Morphosisgames@aol.com.

http://www.gamemaker.nl/

4

It’s Alive - Game Maker 5
Morphosis: John Hempstead

One of the first things when you run Game Maker 5 is it’s XP
styled graphics. This is a nice change that was done really
well. The icons are clear which makes it easy to identify it’s
meaning. Even though the icons changed, some still look like
the old GM illustrations, with a little xp touch up, and some
icons are brand new icons like the comment, rooms, time
line, score, lives, and health. Most of these icons are brand
new features in GM 5.

New graphics for GM 5 are not really needed to create a great
game, but it was a really nice addition. The main GM icon is
still the red ball and it’s preloader remains to be the one that
I had created. But don’t forget, these can be changed in your
game.

Two new and interesting features in GM 5 is the “Data File”
and “Time Line”

Data File:
In more advanced games you often need to use additional
files, for example files that describe certain properties,
backgrounds and sprites that you want to load during the
game, movies, DLL files or your own fonts. You can distribute
these files with your game but it is nicer to embed them in the
game itself. For this you can use data file resources. A data
file resource simply stores the contents of a file. When the
game starts this file is written to the disk and can then be
used in the game Data files can take a lot of memory but
loading and exporting them is fast.

Time Lines:
In many games certain things must happen at certain moments
in time. You can try to achieve this by using alarm events but
when things get too complicated this won’t work any more.
The time line resource is meant for this. In a time line you
specify which actions must happen at certain moments in
time. You can use all the actions that are also available for
the different events. Once you created a time line you can
assign it to an instance of an object. This instance will then
execute the actions at the indicated moments of time. Let me
explain this with an example. Assume you want to make a
guard. This guard should move 20 time steps to the left, then
10 upwards, 20 to the right, 10 downwards and then stop. To
achieve this you make a time line where you start with setting
a motion to the left. At moment 20 you set a motion upward,

at moment 30 a motion to the right, at moment 50 a motion downwards and at moment 60 you stop the motion.
Now you can assign this time line to the guard and the guard will do exactly what you planned. You can also use
a time line to control your game more globally. Create an invisible controller objects, create a time line that at
certain moments creates enemies, and assign it to the controller object. If you start to work with it you will find
out it is a very powerful concept.

5
Advanced and simple mode:

Another interesting new feature is for the user to switch
from an advanced mode to simple mode. I could remember
some people saying that GM 4 was hard to use, not this
is solved. Even if a game was made in Advanced mode,
it still can be used in simple mode. That way samples and
tutorials should not be effected. As you can see in the right
image, simple mode compared to advanced mode.

You can select the mode in which to use the program. In
simple mode many resource types and options are made
invisible, making it easier to start using the program. In
advanced mode it is easier to access the advanced options.

Other changes inclued buttons that let you draw the value
of the variable, draw the value or image of lives, draw
health value, set the room caption, mouse enter/leave
options, 2 joystick control options, and I am sure a lot more!

A small test on the 1945
game between Game
Maker 4.3 and 5. Tested
on Windows ME. 256
megs of RAM. 933 P3.

Game Testing Time 04:09 sec

Opening game in GM 01:15 sec

Creation of .exe 00:82 sec

Loading Time of .exe 00:82 sec

.gmd file size 97.1 k

.exe file size 1.29 meg

215 k

04:00 sec

00:87 sec

01:08 sec

02:43 sec

1.35 meg

GM 5 is a top notch program to create games and even
presentations, movies, and other multimedia tools. It is free
but you should register it to help the development of future
versions of game maker.

“Game Maker can be used free of charge. There are no
restrictions on the games you create with it. The games
will show no nag screens and you can even sell them if
you like. See the enclosed license agreement for more
details.

Developing Game Maker though does cost time and money. If you wish to support the development of Game
Maker or wish to disable this nag screen, please register Game Maker. In the future there might be other benefits
for registered users.”

And last, GM 5.0 release is the beta version and should be used for bug testing for the final release in April.

http://galileo.spaceports.com/~morphea/
http://www.gamemaker.nl/

6

Examples

Since scripts are so important, I want to present a few examples as to good script programming. Perhaps the best
way to practice this is by writing scripts by themselves as I am doing here; you will be forced to remove yourself
from the context of a program and thus generalize your scripts. Feel free to copy and paste them into your code,
using them as per the comments.

// Returns the square of arg
{
 return argument0 * argument0;
}

// Concatenates two strings, returns it
{
 return argument0 + argument1;
}

// Moves object arg1 spaces on a diagonal
// Arg0 is the object, Arg1 specifies distance
// Arg2 is direction – 1 = NW, 2 = NE, 3 = SW, 4 = SE
{
 localx = argument0.x; locally = argument0.y;
 if (argument2 == 1 || argument2 == 3)
 localx -= argument1;
 else localx += argument1;
 if (argument2 == 1 || argument2 == 2)
 localy += argument1;
 else localy -= argument1;
 argument0.x = localx; argument0.y = localy;
}

// Find the angle between two objects, in degrees
{
 disX = argument0.x – argument1.x;
 disY = argument0.y – argument1.y;
 tanRadians = tan(disY / disX);
 return tanRadians * 180 / (2 * pi);
}

I may create more scripts later if demand is great, but hopefully these few examples will serve to show the clarity
that a good script can provide.

6 Variables

It is fair to say that a lot of programming and video games revolves around variables and their usage.
They are what make programs interactive – the user can input data, have his input stored as variables,
and the program outputs meaningful data. As such, it is worthwhile to explore and explain the value and
good use of variables.

Data Structures

What are data structures? They are merely types of variables; for example, while S may be a variable,
the type string can be considered a data structure. As explained in Section 2, General Concepts, GM
provides three easy basic data structures: strings, real numbers (reals), and booleans.

Tutorials
By Allen Cheung

Guide to Good Programming and
Game Making Practices with Game Maker. Part 2
Continued from issue 1

6

7
Arrays

One important data structure that GM provides is an array, up to two dimensions. An array is a collection of similar
data structures that can be easily accessed; it is an orderly progression of data. They are declared as follows:

Arrayname[number]

So that arrayname is name of the array, and number is the counting number (starting from zero) that contains a
variable, also known as an index. In a way, an array can be thought of as a row of variables:

[0] [1] [2] [3] …
15 178 3 84

In the example above, arr[0] would return 15, and arr[3] would give back 84.

The reason arrays are useful is that they can be accessed via simple counting, which is perfect for loops. By going
from 0-9, for instance, one can quickly go through 10 similar variables and assign values to them. Consider the
code:

{
 s = ‘’; // ‘’ is the null string, kind of like the number 0
 for (n = 0; n <= 9; n += 1) {
 s += chr(n + ord(“A”));
 arr[n] = s;
 }
 for (m = 0; m <= 9; m += 1)
 draw_text(10, m*10+10, arr[m]);
}

Looks intimidating, but it really isn’t so bad. All the code does is first set the string variable s to the null string, then
enter a loop that repeats ten times. Each time, s adds another letter to the end (remember that s += n is really
shorthand for s = s + n), with that letter being the next letter in the alphabet. (a quick explanation: ord() gives the
numerical ASCII code of a character, so adding to that code will produce further letters down the line, and chr()
will convert that number back to a character) It then stores that string into an array arr, which will have 10 elements
(0-9) by the end of this loop. The last loop will then print the contents of that arr, which should be:

A
AB
ABC
…
ABCDEFGHIJ

With correct spacing from draw_text(), of course. The point here was that because of the nature of arrays, you can
easily run through the entire thing without inventing ten variables to store ten variables that differ only by their value.

GML also allows the use of two-dimensional arrays, formatting as follows:

TwoDimensionalArray[num1, num2]

Where num1 and num2 are the two indices of the array. Just as a 1D array can be thought of as a row of data
types, a 2D array is merely a table (rows and columns) of data. Since GM is in the business of creating 2D games,
such arrays may come handy in, for example, representing the contents of a nxn grid (in a sliding puzzle game).
Unfortunately, this is as high-dimensional as GM goes, but should be enough for all purposes.

Arrays of Objects

An excellent use of arrays would have to be in storing similar objects and instances. GML itself already provides
one such grouping for you – instance_id[n]is an array of all the instances of an object. You may also manually store
instances as a part of an array as well – for example, in an RPG with a large party, one can use something like:

…
wholeParty[0] = objHero;
wholeParty[1] = objEvilHero;
wholeParty[2] = objNinja;
…

8
Then, when the time comes to do something to the entire party (like taking damage from a mass-destruction spell),
we need not stress ourselves over the code:

for (n = 0; n < numPartyMembers; n += 1)
 with (wholeParty[n]) {
 damage = random(defense) + enemyMagic;
 HP -= damage;
 }

And voila, our entire party has just taken damage from the spell, where each individual has calculated his/her own
damage levels according to their own stats. Mark also notes that with instances of the same object, they are already
stored in an array (the instance_id[n]above is that array), and that to cycle through all the instances, the command
with is provided. More on this command can, of course, be found in the official manual.

Constants

We now move onto the discussion of constants in a program. Constants are global variables that are declared in
the beginning of a program; they are there usually as general bounds to certain parameters. Taking our RPG example
above, we can set the maximum damage to no more than 9999, and max health the same number in the beginning
of game:

global.MAXDAM = 9999;
global.MAXHEALTH = 9999;

Then in your actual code:

if (HP > global.MAXHEALTH)
 HP = global.MAXHEALTH;
if (damage > global.MAXDAM)
 damage = global.MAXDAM;

Programming naming convention usually gives constants all capitals. The point here is that by declaring these
variables in the beginning, you can easily look up what the numerical values are. Furthermore, if your code uses a
certain constant multiple times, when time comes to change the number (from play-testing, perhaps, when you find
that 9999 isn’t enough health), all that is required is a quick change in the beginning of the code, and everything
else will fall in line.

Variable Usage

As you begin to make more advanced games or simply just more games in general, you will begin to realize that
not a lot of numbers need to be explicitly given (this is not true for strings, however) – explicitly using a “magical
number” is known as “hard-coding”. You will also begin to notice that your program will behave just as well with one
value as well as another, given that your data structures and overall organization is reasonably solid.

You can take advantage of this by providing the gamer with options. From experience, most games created in GM
tend to be started linear – one loads the game, reads the introduction/instruction screen, then one begins the game
itself. Unlike most professional games, an options screen is not provided, when having one does characterize quality
in that game. They do not even need to be tedious; a platform game, for example, can have the player choose
between easy, medium, or hard, and assign lives 5, 4, and 3 respectively to the gamer. Or he can up the speed of
his monsters with increasing difficulty. Perhaps the main character will walk slower/faster, and jump lower/higher.
The numerical nature of games and programming almost begs for manipulation, so why not add a professional
polish to your game?

Global Variables
GM allows for global variables in the form of:

global.var = x;

Where the keyword global signifies that the variable can be used, called, and changed anywhere in the program.
While this certainly sounds great, the old adage “too much of a good thing will ultimately reduce you to the shadow
of a man you once was and make you beg for mercy” (paraphrased) is certainly applicable. In programming, overuse
of global variables is shunned, and GML is no different in this regard.

While GML avoids the issue of namespace (it’s just a fancy term for the available names that you may give your
variables…makes a difference in complicated and large programs) by requiring the use of global, the practice is
still bad because of the potential to make your program less object-oriented (this is explained in further detail in the
next chapter). By all needs, you should not even

9
need global variables – controller objects (also explained in the next chapter) should be enough to keep
track of all variables that are needed in your game. In other words, they are provided as a convenience,
and there is often the temptation to use them boldly to avoid otherwise clean code (for example, to avoid
passing arguments to scripts by setting a few global variables and changing those). They are not completely
horrible, per se, but extensive usage simply shows that you have organized your program poorly.

Custom Data Structures

As mentioned above, it does not appear to be the case that one can make one’s own data structures in
the context of GML. However, there are ways around this, though they may not be so obvious to the casual
GM user. The general idea is to create a custom object that houses all the data that you need.

You may be at a loss to figure out why anyone would need such a structure, so let’s give a quick example.
Suppose that you want to write a script that returns two distinct strings. Normally, this is impossible, as a
script can only have one return value. Hence, you would need some sort of container or data structure to
house both strings. The answer? Create a dummy object that has two local variables of strings, then in
the script, stuff those two strings in there and return that.

For the most part, however, you probably will not need these custom data structures. As Mark has so
carefully informed me, GM is not based on dynamic scope, but rather seems to be more lexically scoped
(for those that don’t have any idea what I’m talking about, ignore it), so variables tend to stick around, it
seems. In any case, this little trick is here for those that would use it.

Continued in next issue.

http://galileo.spaceports.com/~eaxzone/matchcatch.html

Tutorials
Morphosis

3D Sprites with Anim8or and Game Maker

10

It first may take some time to create a 3D animated image, but I am sure in time your images/sprite will be really
cool. You can use for this tutorial a simple box rather than making a ship, as in mine. But if you would like to
make a ship, go and do it. When you are ready, have your object in anim8or and ready to go.

With your object in Anim8or, we now must place it
in the “Scene”. So, go to “Mode” and select “Scene”

Now when in scene, select “Build” and ad your object
in the scene.

Now, to get rid of the floor, since we don’t want that
as part of the sprite, select “Settings” then
“Environment” and uncheck “Ground Grid”

Now look at what needs to be checked when you
begin to animate the object. It may be a lot easier if
the rotation is done from the side of the object. And
the goal is to get it to rotate 359 degrees. That way
a 360 can loop and look smooth.

Just set your 1st with the object like this and go to
the 25th and rotate the object almost 360 around.

This is the keyframe area, by clicking on your object
you set a key frame. By clicking in the time line you
navigate in the time.

11

Now it’s time to render away. Before this select the view you want to render. It may be perspective, side, front...
Now go to “Render” and select “Render to file” Look at the options in the image above. Select where you want
to save your file, selection of the image size is up to you, I would make it small for now. And also make sure
“Antialias” is unchecked.

About Rendering
You can render your images as image files and import them into
Game Maker one at a time. Or you may have some type of software
such as Ulead Gif Animator 5 which lets you add all or as many
images that you want and then lets you save it as a gif. You also
can render out an avi file and import it into a program (Ulead GA5)
and save it as a gif.

As for the Alias and Antialias, when this is turned on and brought
into Game Maker, the edges of the images may not be transparent.
Antialias blends the edges of the images to make it smooth. It’s
hard to make these smooth areas transparent.

But then, you could use the Alpha Channel and have the Antialiased
turned on only if you have some program that knows there is an
alpha channel (which is the object itself). This means, anything
around the object will be “Keyed” or transparent.

I have done all my sprites with antialiased turned off, so that may
be your best bet.

Add from file in Game Maker.

Final sprite.

In Game Maker:
In the objects create event:facing_direction=90

In the step event: image_single = facing_direction/10

Left: facing_direction = 90

Right: facing_direction = -90

{
 if facing_direction < 0
 facing_direction = 360
}

end

Development
By C.E. Forman

10 Steps To Great Game Design

12

You've solved every Infocom game ever released. You've FTP'd countless text adventure games from Internet sites
in a desperate attempt to quench your insatiable thirst for interactive fiction, but still it's not enough. So you decide
to take the final step, to write your own parser adventure. But--how do you know for sure that people will like it?
How can you avoid making the same mistakes you've seen in many of the quests you've been playing for years?
What exactly constitutes a "good" text adventure game?

That's what I'm here to help you with. I've taken it upon myself to analyze my favorite works of interactive fiction,
determine why they're my faves, and compile a list of their common characteristics that first-time adventure writers
can use for reference.
Keep in mind that this is not an article on programming a game. These ten tips deal exclusively with game design
and the authoring of the game's storyline. My intent here is to point out the most common mistakes beginners
make, and identify methods of avoiding falling into these traps.

 This is the single most important element of any
work of interactive fiction. Unfortunately, it's also the
one most frequently neglected by beginners. Even
the most cleverly designed adventure isn't going to
hold players' interest for very long if they have trouble
communicating what they want to do. The earliest
adventure games, such as the original "Adventure in
Colossal Cave" and the Scott Adams series, used
crude, verb-and-noun parsers that accepted only two
words in each command. Due to the limitations of
computers in those days, a standard parser's
vocabulary was often very limited, leaving gamers
dissatisfied.
The Zork Implementation Parser introduced by Infocom
in the late 1970s is really the accepted standard for
parsers today. If you're using an IF design tool such
as Inform or TADS, developing a good parser isn't as
much of a problem. If, on the other hand, you've
decided to write your own parser, pick yourself up a
good thesaurus and use several common synonyms
for each noun and verb. Make your puzzles the
challenge of your adventure; don't force players to
"guess the verb."
In addition, the more options you can supply your
parser with, the better. An "undo" command, built-in
hints, the ability to allow players to configure the
function keys as typing shortcuts, and automatic
mapping will all contribute to the reduction of frustration
on the part of the player.

Develop a good parser.1
 Don't just force players to wander aimlessly from
one puzzle to the next, halting their progress completely
until they solve the only available puzzle. Branch out your
puzzle structure and make it as nonlinear as possible.
Interweave your puzzles with one another and allow players
multiple paths through the adventure. That is, don't make
players solve the puzzles in the same order every time;
give them some flexibility. The only point in the game where
there should be only one path for the player to follow is at
the conclusion, where all the branches of puzzles come
together to form a final challenge.
Puzzle connectivity is also important. Make sure each
puzzle "fits in" with all the others. If you have an extremely
challenging puzzle, but you can't make it fit logically into
your adventure, don't just throw it in for the sake of using
it. Save it and use it in another game, where it is appropriate.
One of the biggest abuses of this that I've seen comes in
the form of mazes. Often adventure writers will simply
throw in a maze to make the game more difficult, when in
reality it is totally inappropriate and has nothing to do with
the game at all. Making maps of games is tedious, and
mazes are generally frowned upon in adventure games
today, unless they have a truly unique twist (such as the
catacombs in "Leather Goddesses of Phobos"), or can be
solved without mapping (such as the wet tunnels in "The
Lurking Horror"). In summary, designers should ask
themselves this: "Is this puzzle connected to the game in
some way, or is it in the game merely for the sake of its
own existence?" If it's the latter, you should probably
consider scrapping it.

Good puzzle structuring.2

13

 What's the fun of getting all the way to the end
of an adventure only to discover that the final challenge
is the easiest puzzle in the history of the universe? In
most cases, the best adventure games are the ones
that curve the difficulty of their puzzles. Keep 'em fairly
simple at first, to allow the player to get into the game,
then gradually raise the challenge as players go deeper
into it. Don't get me wrong. It's perfectly okay to throw
in a difficult or obscure puzzle or two in the early
stages of the game, but the key is not to overwhelm
the player at the outset.
Of course, the primary deciding factor as to the difficulty
of the puzzles should be how difficult you've chosen
to make the game as a whole. If you're writing for
expert players, design your puzzles accordingly. If
beginners are your target audience, include a lot of
simple, one- or two- step puzzles. In all cases, after
a particularly arduous puzzle, reward the player with
a few simpler ones. You'd be surprised at how many
players lose interest when a game's puzzles aren't
balanced.

Diffulculty of puzzles.3
 This one is basically just common sense, but it's still
sometimes overlooked. If you're writing a sci-fi adventure,
pay attention to the laws of physics. Don't let players enter
the vacuum of space and survive without spacesuits.
Realism is less of a problem in fantasy games, as much
can be justified by the use of magic. The point, though, is
to make sure everything makes sense in some way. This
is especially important in the area of puzzles. Avoid making
players do things that have no logic or purpose behind
them. The more realistic your adventure, the more it will
draw players in.

Good puzzle structuring.4

 You've created a whole other world, so why not let the player enjoy the beauty of it? How many times
have you played a game with such lame location descriptions as "You are in a forest," "You are at the bottom
of a tall cliff," "You are outside a cave," etc.? The term "interactive fiction" is not an arbitrary one--players are
essentially exploring a form of writing, much like a good novel, and adding their own input to it. So let the player
see the world you've created, much like your favorite fiction authors let you see theirs.
Take care, though, not to overwhelm your players with prose. If you give them little opportunity to interact, they
just might decide that they may as well be reading a book. Don't get too bogged down in descriptions. Usually
half the screen is the absolute maximum for a room or object description, and this limit should only be reached
on rare occasions. However, if a particular puzzle requires a lot of text in order for the player to see it, one or
two full screens are acceptable. (A good example of this case is the mirror box in "Zork III".) Don't make players
read the text over and over unless they want to, though. Make sure your parser has the option of changing the
length of room descriptions. Using phrases such as "You are in the forest" the second time a player goes there
is perfectly acceptable. (Just make sure that players can still get a better description if they want it.)
While we're at it, I'd like to mention one variation on this subject. Most players, when writing good room
descriptions, like to include several objects or features in each location (for example, a tavern might have a
fireplace, a bar, and several tables and stools). Nothing is more aggravating than typing "EXAMINE THE
STOOLS" only to be told, "I don't know the word 'stools.'" This is guaranteed to instantaneously shatter the
fantasy and destroy any hope of players ever really getting into the game. Do this enough, and you'll alienate
them forever. If you're going to put an object in the location's description, you'd better let the player interact with
it, even if it's only in a limited way. Just a message saying, "There's nothing special about the stools." will suffice.
Incidentally, I feel that this is one of the biggest problems with the Zork-based MUDs I've played. Players see
that term, "Zork-based," and they telnet in expecting the same level of realism that Infocom gave us, and
unfortunately, they rarely, if ever, get it. I myself have on occasion experienced difficulty in simply trying to
interact with what the game claims is in the scene with me, and I'm afraid this is the rule rather than the exception.

Be Discriptive5
Resident Evil

14

 I know, I know. Life isn't fair. Never has been,
never will be. But adventure games aren't real life;
they're a form of entertainment. And the only way players
will be entertained is if they're treated fairly. Here are
some general guidelines you should follow to ensure
that this is the case:
Don't let the game get into an unsolvable state too
much, without giving the player some indication of it.
There's no definite line here, so you'll have to use your
own judgment. As an example, consider the KULCAD
scroll in Infocom's "Enchanter". (Warning! Spoiler to
follow...) You are supposed to use this spell to dispel
the illusion of the infinite winding staircase, as this is
the only way to overcome this particular obstacle.
However, you can also use KULCAD to get rid of the
guarded doorway and the Gordian Knot around the
jeweled box. If you do one of these, though, the scroll
is gone and you can't win the game. Despite the
frustration that could be caused by this, I still don't
consider it unfair, because if you use the spell on
anything other than the stairs, your master Belboz will
appear before you and warn you that the evil Krill has
been alerted to your presence. You receive a definite
hint that maybe there was a better way. On the other
hand, I've heard numerous complaints about the game
"Curses" because you can inadvertently do something
out of sequence and blow any chance of being able to
win, and no indication whatsoever is given. So save
yourself and your players a lot of trouble, and give some
kind of message if they unintentionally do something
to get themselves stuck. (On the other hand, throwing
all your possessions off a cliff is not a very smart move
to begin with, and players should be able to figure this
out without a hint. Only tell them they've screwed up
big-time if there's a chance they can't determine that
for themselves.) Incidentally, a good way to allow players
to keep going after they've lost an item is to allow them
to re-obtain the item in the place they originally got it.
For instance, allow them to pick another apple off the
tree if they eat or lose the one they originally got.
However, when you're dealing with a unique item, such
as the KULCAD scroll, this isn't a feasible option. Again,
you'll have to use your own judgment here.

Don't force the player to have too much foresight.
Inventory management is a crucial part of an adventure
game in which the number of things a player can carry
is limited. Often players will wander into a new location
and only be able to take so much along with him.
Obviously, if they're going into a dungeon they'll need

Be Fair to the player6
a light source, a weapon, and probably some food and
water, but if they're going to need something less
obvious, you'd be wise to provide a hint beforehand.
Of course, players can always restore, but going through
a lot of moves to get back to where they was before
can be frustrating, and too many save files can become
difficult to keep track of. It's best to give players a
general idea of which items they won't need and thus
can leave behind. Don't make them pick and choose
too much. A few very good games I've seen are designed
so that the player's inventory is pretty much managed
as the game progresses. That is, the player uses two
items to solve a puzzle, thus removing them from his
inventory. Then she finds another object and adds it,
and later gets rid of it in another puzzle, and so on. If
you have items that don't have multiple uses, this is a
good technique to use.

Don't overwhelm players at the start. If you have a large
area they can explore in the beginning, you'd be wise
to point them in the right direction to start with. Legend
Entertainment's "TimeQuest" is a perfect example of
this. With 80 different time-places to visit, any of which
can be reached from the beginning, it's vast enough to
make the player feel burdened. But this game directs
you to Rome in 44 B.C. from the start, which gives them
a sense of direction and helps you establish a path
through the game. In addition, the most crucial time-
places are all listed in the game's documentation, so
the player knows where the important places are. This
makes it easier to get started.

Resident Evil Inventory

15
Don't put off the entire reward until the end. Congratulate
players when they solve a difficult puzzle, possibly by
giving them a special item or power. According to Joseph
Campbell's monomyth, the challenges a hero faces
become more and more difficult as his quest continues,
but the rewards become greater. This should apply to
adventure games as well.

Don't create puzzles that absolutely have to be solved
within a specific time frame, unless you give the player
a reasonable hint.

Include good error messages in your program to tell
players if they're doing something wrong, but don't insult
players in the process. Be clever, but not verbally
abusive.

Random events are good for spicing up adventure
games, but never, EVER base the decision of whether
a player lives or dies upon the outcome of a random-
number generator. I mention this because I did it once.
The player had to cross a pit by placing a wooden plank
over it and then walking across. But you fell in 1f the
time anyway. Talk about frustrating! The only instance
where this is at all acceptable is when there is an
alternative solution that is not random. For example, in
Sorcerer, players have a 10% chance of successfully
jumping a gorge, but if they use a flying spell, they'll
get across every time.

You might be saying, "Well, this is my game, so I'll do
whatever the hell I want, and I don't care whether the
player thinks it's fair or not!" Keep sending this attitude,
and pretty soon you won't have any players who care
about finishing your adventure. Book authors who don't
show respect for their readers don't stay book authors
for very long. The same holds true for interactive fiction
writers. Players are your lifeblood; they keep your game
alive. If you want to write games solely for your own
pleasure, that's fine, but you won't gain any recognition
from doing it. Treat your players as you would treat a
paying customer, because after all, that's essentially
what they are.

 At the same time, don't hold the player's hand all the
way through the game. Let them experience a game death
if their actions aren't clever enough. Dying is a natural part
of adventure games. Can you picture what the Zork Trilogy
would be like without the constant threat of being eaten
by a grue in a dark place? And just try to imagine "The
Lurking Horror" without death! Which would you rather see
after doing something intentionally stupid in an adventure-
-a detailed, possibly amusing, account of your alter-ego's
untimely demise? Or a lame message saying, "That would
kill you, so I'm not even going to let you try it"? Believe it
or not, it's FUN to try to find new and inventive ways to kill
off your character (especially after you've already finished
the game). Pampering players with feelings of invincibility
is only going to make them severely disappointed. And
besides, this is one of the few ways you can get away with
murder nowadays. If you've put an UNDO command into
your game, don't be afraid to let players use it.

Killing the player off.7

Puzzles are fun, but the story itself should be the main
point of an adventure game. Rather than having the player
wander aimlessly around solving puzzles, develop the
story as the player moves along. An unexpected plot twist
or the introduction of a new NPC can really liven things
up, especially when it occurs in the midst of a good puzzle.
Puzzles alone can only carry a game so far.
Another thing to keep in mind is that a game should have
a good introduction and ending. Actually, an introduction
is optional. Some writers may prefer to simply have the
game begin as soon as it loads, much like "Zork I", while
others may choose to follow the route of "Beyond Zork"
and have introductory text spanning several screens. A
few games, such as "Zork Zero" and "Demon's Tomb",
even have short prologues--opening sequences which play
much like the game itself, but which exist for only a limited
number of terms. Any of these methods will suffice.
A good ending, though, is indispensable. Is it worth
struggling through a game just to be rewarded with the
words, "Congratulations, you win"? A good game ending
should tie up any and all loose ends the story may still
have, pave the way for the sequel if you're writing a series
of games, and leave players feeling as though they have
truly accomplished something. Good endings will be read
again and again by players, but I can guarantee that a
lame ending will only be seen once.

Challenges and Story.8

What is a Good Game?
By Mark Overmars

Games, Design, What is it?

16

 Most of the time, when writing the game's
introduction, you'll want to tell the players only so
much about your world. Let them learn the various
intricacies and details of it themselves. If your world
is vast and complex, build several sources of
information into your game to help the player
accomplish this. You could implement an encyclopedia
(Infocom uses these in several games), newspapers,
a computer database, or some other form of
information storage (the tape spools in Stationfall
come to mind). In addition, you might want to make
one or more characters act as primary information
sources. The player could then ask those characters
about various people, places, or things in the game.
The more you tell the player about your world, the
more complex and realistic it will appear.

Information in your game.9
 A lot of good adventure games become dust
collectors after players have solved them. Often this
can be prevented, or at least delayed, by a little extra
effort on the part of the author. Give some of your
puzzles multiple solutions. Think up imaginative ways
of dying and humorous tricks for the player to try.
Some adventures even have multiple endings
depending on various things the player has done (or
not done) during the course of the game. All of these
things can keep players interested for quite some
time after they've been through the entire game. The
"Zork" and "Enchanter" series are particularly good
examples of this tip. I'm still finding things buried in
them that I never knew existed. A little extra
programming can go a long way.
 -End-

Keep the longevity intact.10

When Atari produced its first game console in the seventies is
was not very popular. This changed drastically when the game
Space Invader was created and bundled with the console. Within
a short period of time Atari sold a huge number of consoles. The
same thing happened when Pacman was produced. And for the
Nintendo Game Boy Tetris was the absolute winner. Why are
these games so special that they mean the difference between
success and failure of the devices they were created for?

The same applies in PC games. Some games become extremely
popular making their creators instant millionaires, while other
games, that look almost the same, become miserable failures.
And then there is also a large collection of games that you never
see because they were cancelled halfway the production and
their creators went bankrupt. What makes a game a winner and
what leads to failure? This is a very difficult question to answer.
It involves many different aspects. In this tutorial we will delve
into some of these aspects in the hope it will help you to create
better games.

What is a game?

Before talking about good games we should decide what a game
is in the first place. There is a surprising amount of discussion
about this issue and there are many different definitions. It is
easier to say what is not a game. PacMan and other games are still very popular.

http://www.gamemaker.nl/games_12.html

Is this Sim City a game?

Is SimCity a game?

17
A movie is not a game
This is rather obvious, but why? What elements of games are
missing in movies? The main difference is that there is no active
participation of the viewer in a movie. The viewer does not
control the movie and cannot make decisions that influence the
outcome of the movie. The same is true for stories and plays
in theater. Also the final outcome of the movie is fixed (even
though the viewer does not know it). This is a crucial aspect of
movies and plays. People in general don’t like plays in which
the outcome is not predetermined. In games the opposite is
true. People do not like it when the outcome of a game it fixed.

A toy is not a game
You play with a toy while you play a game. With a toy there are
no predefined goals although during play you tend to set such
goals yourself. A number of computer games actually are close
to being toys. For example, in SimCity or The Sims there are
no clearly defined goals. You can build your own city or family
and most likely set your own goals (like creating the biggest
city) but there is not really a notion of winning the game. One
could add this (e.g. you could add that the game is won when
your city has reached a particular population) but this can be
frustrating because it is not a natural ending. This being said,
there is nothing wrong with creating a nice interactive computer
toy.

A drawing program is not a game
A drawing program is fun to play with and encourages creativity,
but again it has no clear set goals. The user defines the goals
and it is the user who decides whether the goals are reached.

A puzzle is not a game
This is a more difficult one. Clearly many games contain puzzle
elements. But a puzzle is static, while a game is dynamic and
changes in the course of playing it. A satisfying game can be
played over and over again and there are different strategies
that lead to success.

So what is a (computer) game then? Here is my definition:

A computer game is a software program in which one or
more players make decisions through the control of game
objects and resources, in pursuit of a goal.

Note that the definition does not talk about graphics, or sound
effect, or in-game movies. Such aspects obviously do play a
role in making nice, appealing games, but they are not the
essential aspects of games. Let us look at the different ingredients
of the definition in some more detail.

18
A computer game is a software program
This makes it rather different from for example board games or
sport games. It takes away some of the fun of games. There
are no pieces to move around and there is no physical
satisfaction. Also the social aspects are less prominent. But we
get quite a bit in return. A software program can much better
react to and adapt to the players. Most computer games have
a real-time element that is not present in board games. The
game continues even when the players do nothing. This can
lead to enhanced excitement and a better feeling of presence
in the game. Also computer games can adapt to the players
making it satisfying for largely different players, both beginners
and advanced players. The possibility of having computer-
controlled opponents adds many new challenges. Computer
games can also be more complex because the game itself can
help the players understand the different aspects and teach the
player how to play. Finally, computer games can create a more
emissive environment by adding wonderful graphics, music and
cut-scenes.

A computer game involves players
This is rather obvious. A game is not something to watch. You
should be involved in a game. Still I want to stress the importance
of the player. Beginning game designers often forget that you
make the game not for yourself but for the people that are going
to play it. So you always have to think about who they are. A
game for children should be rather different than a game for
adults. And a game for hard-core gamers should be rather
different from a game for less experienced players. You need
to pick the correct audience. Bad games are often written for
the wrong audience. For example, a very experience flight
simulator freak wants to be able to control every aspect of the
plane and want things to be as realistic as possible. For a player
that just wants a bit of quick flying fun this is frustrating and
boring and such a player will most likely never get the plane to
take off, let alone to get it to land.

Playing a game is about making decisions
The player makes decisions that influence the rest of the game.
In fast paced action games such decision typically involve in
which direction to move and which weapon to choose for
shooting. In complicated strategy games the decisions involve
were to build your settlements, which units to train, when and
where to attack, etcetera. Of course decisions should have an
effect. Surprisingly, in many games the effect of decisions is
only marginal. For example, often it does not really matter which
weapon to use. This often leads to frustration. Carefully balancing
decisions and their effects is crucial for satisfying game play.

19
Playing a game is about control
The player should feel in control of the game. Not the other way
round. Uninterruptible sequences in which the control is taken
out of the hands of the player still occur in many games and
often lead to frustration. The more freedom there is for the
player, the better. There is though a catch here. A game is also
about surprises and dramatic effects. Such effects can be
created much better if the player is not in control. For example,
in a movie, when the main character approaches a door you
can let the music rise. The viewer knows that something is
going to happen. Together with zooming in on the door, this
can create a great dramatic effect. But if the same happen in
a game and at the last instance the player decides not to open
the door, most of the effect is gone and even becomes absurd.
Careful balance of freedom of control and dramatic effect is
difficult. (There is another less valid reason for not allowing too
much control. More freedom and control for the player makes
it more work to create the game.) Whenever you need toconstrain
the user, try to do this in a natural way. For example, in Riven
the player moves between different parts of the game world.
By letting the user use some kind of train system it is natural
that this motion goes automatic and cannot be controlled by
the player.

Game objects and resources
In a game you normally control certain game objects, like the
main character, units, a car, etc. In some games you can control
just one object while in other games, for example strategy
games, you can control many different objects. Besides the
game objects that the player controls, there are normally many
other objects that are controlled by the computer. The game
objects the player controls play a certain role in the game. This
is an important property. In other programs you also control
certain objects, like buttons, but these do not play a role in the
program. They are only meant to give certain commands to the
program. Besides controlling game objects you must often also
control certain resources. This is most evident in strategy games
and simulation games in which you must control the amount of
food, wood, stone, gold, etc. But also in many other games
there are resources to control, like ammunition for your weapons,
a shield that can be used a limited amount of time, etc. Careful
planning of resources and their use can add many nice aspects
to the game play. The game designer must balance the availability
of resource with their need to achieve interesting game play.

A game needs a goal
This is a crucial ingredient in a game. People want to win a
game and, hence, there must be a goal to reach. For long
games there should also be sub-goals, like finishing a particular
level, defeating a certain monster, or acquiring a new spell.
Reaching a goal or sub-goal should result in a reward. Such a
reward can consist of a score or some nice movie, but it is

20
better if the reward is actually part of the game play itself, for
example a new weapon, some additional useful information,
etc. We will talk more about goals and rewards in a moment.

So now we know what a computer game is. But is does not say
much about when a game is good. Think about the following
computer game:

You have to rescue the princess who is held in a fortress.
On the screen you are shown two roads, one leading to a
fortress and the other leading to a cave. You have to decide
which road to take. You choose the road to the fortress?
Congratulations. You rescued the princess and won the
game. You choose the other road? Bad luck. You are eaten
by the cave monster and died.

If you verify it, this game has all the ingredients described above.
There is a player, there is a decision to make, the player controls
what is happening, there are game objects (the prince, the cave
monster, etc.) and there is a clear goal. But it is obviously a
rather boring game. There is no challenge. The game is too
easy. So clearly we have to do a better job to make an interesting
game.

Reaching goals

The most important part of a game is that there is a goal and
the game challenges the player to try and achieve this goal.
Actually, there are often many different sub-goals. Goals come
in all sorts and shapes. A goal can be to try and shoot an enemy
plane, or to finish a level by collecting all diamonds, or to reach
the highest score or to finish the game. Clearly some of these
goals are short-term goals while others are long-term goals that
can only be reached by playing the game for weeks. A good
game is filled with these goals and the player should be rewarded
when he reaches one of the goals (what else is the fun to try
and reach it).

Goals should not be too easy to achieve. There must be a
challenge. And when the game progresses the goals should
become harder to reach and the player has to become better
at the game to achieve them. This learning curve is very
important. In the beginning the player needs to understand the
controls and the mechanisms in the game. This is best done
by achieving some simple goals. Later on, the player understands
the game better and will be ready for a bigger challenge.

Obviously, when goals are hard to achieve, there is a big chance
of failure. You have to be careful with failure though. It can
easily put the player off, making him stop playing. And that is

21
definitely not what you want to happen. To avoid this
it is crucial that, in the case of failure, the player
always has the feeling he made a mistake that he
could have avoided. It should not be the game’s fault
that the player lost, but his own. It is one of the
aspects that distinguish games like PacMan and
Tetris from other games. You always have the feeling
you did something stupid. You can be pretty angry
with yourself when it goes wrong and you are
determined to avoid this mistake the next time. This
feeling keeps you playing the game. On the other
hand, consider a maze game in which from time to
time at a random spot a flash of lighting occurs,
killing you if you happen to be in the neighborhood.
In this game you, as a player, did nothing wrong.
You just had bad luck to be at the wrong spot. This
is very frustrating. You are not angry with yourself
but with the game. And you probably soon stop
playing it. Don't think that commercial games are
perfect in this matter. Many games produce random
enemies and if you have bad luck they appear at
the wrong moment and slaughter you.

I hope you learned from this that you have to be
careful with "luck" in your games. Whether the player
can achieve a goal should not depend on bad luck.
But it should neither depend on good luck, even
though that is less frustrating. Imagine that you can
be lucky and find a super bomb just before facing
the main enemy. Having the super bomb make the
fight very simple while not having it makes it a major
challenge. Having got the super bomb does normally
not give the player much satisfaction in finishing the
monster. It would have been much better if the super
bomb was always there but the player had to make
a difficult move to get it, for example, jumping over
a dangerous pit. Now the player has an interesting
decision: performing the dangerous jump to make
the fight easy, or not risking the fall and taking on
the monster with lesser weapons.

Decisions
As we saw in the last example, creating an interesting
decision enhances the game play considerably. In
general, decisions are a crucial ingredient of games.
The more interesting the decisions, the more
interesting the game is. There can be very simple
low-level decisions or very high-level strategic
decisions.

Let us look at the well-known PacMan game. It is
packed with decisions. The most important decision

that you constantly have to take is which direction to
move in. Are you trying to stay as far as possible away
from the monsters or are you going after the dots, even
if the monsters stay close-by. And will you go to a
corner, where you might be caught or will you stay in
the center where you can move in more directions but
can also be attacked from multiple sides. The second
type of decisions lies with the pills you can eat to chase
the monsters. When are you going to use them? Do
you leave them to the end and only use them to get
the final dots or do you use them early on to clear most
of the maze. And if you eat them, are you going to hunt
for the monsters to get extra points or are you going
to use the safe time to eat more dots and try to finish
the level? And finally there is the bonus item that
appears from time to time. You can try to get it for extra
points, but you will run the risk of being eaten by a
monster.

When there are many decisions to make, like in
PacMan, the player will make mistakes. In PacMan
these mistakes are not immediately fatal, but it will
require you to work harder to finish the level or to get
the highest score. This is important because everybody
makes mistakes and you should not be punished too
much for such mistakes. Like a reward should be
related to the achievement you made, a punishment
should be related to the seriousness of your mistake.
If the player looses, this should be the result of a grave
mistake or a series of smaller ones. In such a case the
player will definitely feel that he himself is to blame for
the loss, and will continue playing to try to do better.

Balance
In a good game different game aspects are balanced.
For example, the player should have the weapons with
which he can fight the enemies. The weapons should
not be too strong. That would make the game too easy.
And they should not be too weak because then the
player can only survive if he has a lot of luck, and
remember what we said about luck before. Balance is
difficult to achieve. And players are very clever in finding
out where the game is unbalanced and exploit this
unbalance, thereby often ruining the fun of the game.

A lot can be said about game balance. In a future
tutorial we will study game balance in detail so here I
will just make some general comments. There are
actually three aspects of balance that are rather different:
balance between players, balance between the player
and the game play, and balance between different
features in the game.

22
Balance between players
If you create a two-player game, you better make
sure that the best player normally wins, and not the
most lucky one. Imagine a strategy game in which
two players compete with each other. As in most
strategy games they have to build up a city and for
this you need wood. Now imagine there is just one
forest in the world and one player starts very close
to this forest and the other is far away from it. This
gives the first player an advantage that will most
likely win him the game. So the game is highly
unbalanced.

A game of chess on the other hand is highly balanced.
Each player has the same pieces and can make the
same move. The only problem is that one player can
start and this is actually a rather big advantage in
chess. But this is balanced out because in a match
each player can start the same number of times.

Chess is a symmetric game. Symmetric games are
well balanced. But symmetry is also a bit boring.
Imagine that in the strategy game I mentioned the
world looks completely symmetrical and each player
plays the same race with the same units. That would
make the game less appealing. Still it is used rather
often. For example, the multiplayer maps in Red
Alert II are very symmetrical. The real art lies in
making a non-symmetrical game that is still rather
balanced.

One way of achieving this is to use fake asymmetry.
Let me demonstrate this with an example. In our
strategy game we let the first player start behind a
mountain range while the second player has his city
behind a river. The first player we give the ability to
create boats while the second player can create
helicopters. This looks very asymmetric but the
helicopters can pass the mountain range and in a
similar way the boats can pass the river. So balance
is restored again. Many strategy games use this type
of fake asymmetry. Races might look rather different
but in the end the possibilities are very similar.

Balance between the player and the game play
The game play is there to help the player, not to fight
the player. As I said before, the player should loose
because he made a mistake, not because he forgot
the key combination to fire the canon. Careful design
of the interaction (the use of the keyboard, mouse,
joystick, etc.) is important to avoid this type of problems.

Also you need to strike a good balance between what
the player must do and what the game does for him.
For example, in most games the player does not need
to keep on pushing buttons to make a game character
walk. The game does this automatically for him. But
the player must press a button to make the character
shoot. In many strategy games, soldiers automatically
start attacking enemies that come in close range rather
than letting the player constantly check on all the units.
But the player must decide when to start an invasion
into foreign territory. But also well-known games make
the wrong decisions here. For example, they force the
player to constantly bring food to the troops or they
force you to manually withdraw wounded soldiers from
the battle. For example, one of the things many people
complained about in Black and White was that when
your people were praying you had to bring them food
all the time.

Let me give another example. In the early adventure
games one of the major problems was to find out where
you should click on the picture to get certain things
done. For example, to open a door you had to find the
secret button to press. Only after pressing on all the
100 stones in the wall you found the one that opens
the door. This adds no fun to the game. In modern
adventure games the mouse cursor changes whenever
you move it over a place where you can click and often
a message appears indicating what there is to click
on. Good visual cues are also given, for example by
giving one of the stone a slightly different color. This
will improve the game play a lot. The player still has
to come up with the idea that there might be a secret
button but once he has that idea it is easy to find.

The bottom line is that the player should spend his
time and energy on the important aspects, and the
game program should do the rest. The game should
try to understand what the player wants and take action
accordingly, rather than the other way round.

23
The balance between game features
A game contains many different features: different
weapons, different enemies, different units, different
roads, all sorts of resources that can be use, and so
on. These features result in decisions for the player:
which weapon to use for what enemy, which road to
take, how to use the resources, and so on. This
makes the game interesting. But you better make
sure there are some real decisions here. For example,
when your game features four types of weapons,
but one is superior to the others, the player will never
use the other three weapons once he got the best
one. So there is no decision left anymore. To keep
the decisions interesting you should balance the
good aspects of the features with the bad ones. For
example, the powerful weapon can fire only one shot
per second, or the ammunition is more expensive,
or it cannot be used in a cave, or one opponent is
more sensitive to a particular weapon than another.

Also you have to balance the powers of the player
with the power of the opponents. When new
opponents appear during the game, you should give
the player new powers to fight them. But be careful
that you don't fall in a well-known trap in which you
simply increase the firepower of the player while the
opponents get equally stronger. This does not lead
to more interesting game play. There is not must
difference in driving with a slow car against slow
opponents or with a fast car against fast opponents
(unless, of course, steering the fast car is more
difficult). A key issue here is that the player should
improve during the game, not the character he plays
(or car he drives).

Don't forget that a player must learn to play the
game. That is, the game should start easy with easy
decisions for the player to make. When the game
progresses and the player becomes better, he should
get more and more complicated decisions to take.
This can be achieved by introducing new features
gradually during the game. The features should
match the players' abilities. Make sure that there are
still new features appearing far into the game. Too
many games show all the features in the first few
levels after which the game becomes just more of
the same. Good games come up with surprises, all
the way till the end.

Rewards
You need to reward a player when he achieves a
goal. A reward can take the form of a particular
score, some nice graphical or musical feature, or

items that can be used in the game, like better weapons,
power-ups, spells, or knowledge about the game world.
The last type of reward is definitely the most rewarding
to the player and whenever possible you should try to
create this type of rewards. The effect can be permanent
or temporary. Temporary rewards are typically given
when a player achieves minor goals. It makes the
playing easier for a while. Examples of this type of
reward are some extra ammunition, or temporary
invisibility to opponents. Permanent rewards are given
when bigger goals are achieved. For example, you get
a new weapon or spell or car. This will change the
game play from that moment on, hopefully extending
the range of decisions the player can make.

Giving the player the right type of rewards is actually
an issue that is harder than you might think. People
are picky about their rewards. If the rewards are too
small they will not work hard to achieve them. If they
are too large they get greedy and want even bigger
rewards. It is a well-known psychological phenomenon
that players start expecting rewards and if you
somewhere during the game decide that a particular
reward is no longer available they get angry. Let me
give an example of this. If in the first level of the game
you give the player a bit of extra health for each
opponent he kills, the player starts expecting this. If
you decide in the second level that the player should
now be more experienced and you stop giving this
reward the player tends to get upset and might stop
playing the game.

You also need to decide whether rewards are
predictable or more random. For example, in your
game you might give a bonus item for each 50 kills.
Alternatively, bonus items might appear more randomly.
The effect of these two choices on the player is
completely different. In the first situation, in the beginning
the player is not very interested in killing opponents.
It will take way too long before it will result in a bonus.
This will make the game play less intense so there
should be other aspects that keep the player interested,
like exploring the environment. But when the number
of kills approaches the 50 the game plays starts
becoming very intense and the player will work very
hard in killing opponents. So there is a high variation
in intensity, which is appealing to certain types of
players. When the award is more randomly there is
always an interest in trying to kill opponents because
it might lead to a reward. So the average intensity of
the game will be higher. But there will be no peaks in
intensity, which can lead to a more dull game.

A flight simulator should be realistic,
while a scrolling shooter can be more abstract.

24
Make sure the player notices the rewards he gets
and starts understanding why he gets them. If the
player does not know the relation between his actions
and the rewards he gets this will be frustrating to the
player and will lead to less focused game play. So
clearly indicate when points are scored or power-
ups are obtained.

Presence and immersion
You might have wondered why we did not talk about
graphics yet, or about sound and music. Many people
consider them crucial ingredients of a game. New
commercial games try to achieve great new graphical
effects and hire famous musicians to create the
music. So isn't this important? Well, yes and no. If
you look at the games available on the Nintendo
Game Boy, they have very poor graphics and the
sound is horrible. Still they are great fun to play and
many people are addicted to them. On the other
hand, some great three-dimensional games create
a special spooky atmosphere using the right type of
music and stunning graphics effects like dripping
water, smoke, and flickering torch lights.

The key issue here is immersion. Game play is
largely enhanced if the player feels immersed in the
game. If he feels that he is present in the game world
and that his decisions and actions really matter. If
he becomes emotionally attached to the main
characters in the game and really wants to help
them. Important ingredients to achieve this immersion
are the story behind the game, the surroundings in
which the game takes place, the way the main
characters in the game look and behave, the music,
and the special effects.

The story
There is a lot of discussion about whether a game
needs a story. Popular games, like PacMan or Tetris
do not have a real story (although the designers still
give it some sort of story). And in many first person
shooting games, the story is almost always the same:
rescue the world from some kind of evil. Most people
never read the story and it does not influence the
way you experience the game. (You are not trying
to save the world; you are simply killing the monsters
that attack you.) On the other hand, for adventure
games the story is crucial.

It forms the basis for the puzzles you need to solve,
and the story actually helps you solve the puzzles; they
often only make sense when being part of the story.
Also other games can benefit from a good story, again
because they give a meaning to the actions you are
performing and deepen the satisfaction when reaching
your goals. This can be achieved by making sure that
different tasks or levels in the game form a logical
sequence and by putting cut-scenes or movies in
between them to enhance this storyline. Designing a
good storyline with movies, etc. is probably beyond
the skills of most beginning game designers, but it is
good practice to at least put some logic in the game
you are creating and such logic normally comes from
a story.

The game world
A game takes place in some world. This world can be
presented in exact three-dimensional realistic detail
but also in a more abstract or cartoon-like two-
dimensional way. Some games just use text and some
static images to represent their game world. Designing
an interesting game world is an important part of game
design. And picking the right type of representation is
important too. For a first-person shooter a well-detailed
three-dimensional game world with lights, shadows,
and special features like mist and water is crucial to
give the player the feeling of presence. He has to see
what a real fighter would see, otherwise the game
becomes artificial. For a flight simulator the world should
also look as realistic as possible. For an adventure
game a realistic three-dimensional world is not so
important. Here it is the story that creates the feeling
of presence and this is often accompanied by two-
dimensional images. In puzzle games and many arcade
games the game world is rather abstract and often
two-dimensional. For example, in a scrolling shooter
planes don't fly in natural ways nor do the bullets
behave natural. And power-ups might float in the air.
This is all perfectly acceptable for the player when the
game world is rather abstract but would be out of place
when the game world would look realistic. So it is really
important to adapt the game world to the type of game
you are creating.

25
A realistic three-dimensional world can also hamper
game play. For example, many strategy games use
an overhead view (called an isometric view) of the
game world. This makes it easy to track your units
and to quickly see what is happening. You can easily
scroll over the world to steer you units in doing the
right things. Trying to do the same in a full three-
dimensional world is a lot harder. You quickly loose
your orientation, and have difficulty in keeping track
of what is happening in the world. Moving around is
more diff icult. Again you must adapt the
representation of the game world to the game play
that is required.

The main characters
Many games have one or more main characters that
the player controls or meets. Like in a movie it is
important that the player becomes emotionally
attached to these characters. He can hate them and
try to kill them or like them and try to help them. So
characters and their behavior need to be designed
carefully. Again, this depends on the type of game.
For example, in a first-person shooter the player
himself is the character. He should fully identify
himself with the character. In such a case it is
advisable not to give the character a strong
personality. This makes it more difficult to identify
yourself with him. Or at least give the player the
possibility to choose between different characters to
pick one that suits him. For third-person games and
adventures a strong personality is often important.
If done right, the character can get some kind of hero
status, like Lara Croft from Tomb Raider.

Music
Music and background sounds can play a very important
role in immerging the player in the game. Even very
soft background sounds can have a dramatic effect in
games. For example, dripping water in a cave gives a
creepy sound. Rolling thunder can raise the players
fear, etc. Background sounds can also provide clues
to the player about what is going on. For example you
can hear footsteps in the distance or a door that is
slammed shut. Modern games use positional sound
such that the player also knows where things are
happening. Picking the right kind of music for your
games is as important as picking the right kind of
graphics. A cartoon style game should have cartoon
style music. Creepy games should have creepy music,
and funny games should have funny music. Better
have no music than the wrong kind of music. Modern
games nowadays use adaptive music that changes
with the action that is happening. This can further
increase the dramatic effect but is definitely beyond
the possibilities for beginning game designers.

Special effects
Like in movies, special effects can have an important
effect on the player. Some great explosions or sound
effects can temporarily highly enhance the game
experience. But be careful. The effect soon wears off.
After 10 of such explosions you won't even notice them
anymore. And they might even become annoying if
they hamper the game play, e.g. by slowing down the
refresh rate, or distracting the player. For example,
some puzzle games have beautiful color changing or
animated background. Soon these become very
annoying and you really want to switch them off. So
don't spend too much time and effort on special effects.
Better concentrate on good game play.

Gunnerman, Good graphics and Good Game Play?

26
Game genres

Games come in many different types. Over the years
a number of different genres have been created. If
you are very creative you can try to make a game
that is completely new, but if you want to be on the
safe side you better pick a particular genre and make
a game that fits in this genre. The following are some
of the most important game genres:

Arcade games, where reaction speed is the most
important aspect of the game. Typical examples are
scrolling shooters, some maze games like Pacman,
breakout type of games, etc. These games are
relatively easy to make and normally 2-dimensional
graphics is good enough for them. These are definitely
the type of games you should first start creating. A
particular type of arcade games is the pinball game.
These are a bit harder to create because you need
natural ball movement.
Puzzle games, where clever thinking is the most
important aspect. Many maze games are actually
more based on puzzle solving rather than on reaction
speed. Other examples include board games and
sliding puzzles. These games are also normally 2-
dimensional and are relatively easy to create, unless
the game has to be played against a computer
opponent in which case it might be difficult to
program the way the computer plays the game.
(Think about trying to program the computer to play
chess.)
Role playing games (RPG), where you steer a
character through a difficult world. Typical examples
are Diablo and Baldur's Gate. The most important
part of such a game is the development of the
character you control learning new skills, becoming
more powerful, and finding additional and better
weapons. At the same moment the opponents
become more powerful as well. Such games are
often isometric, that is, they have a fixed viewpoint
on the world, but this is not crucial. You can also
create 2-dimensional RPG games or 3-dimensional
ones. RPG games are harder to make because you
must create the mechanism of character
development. Also the games normally need to be
large because otherwise they are soon finished.
Good level design is crucial.
Strategy games, either real-time (RTS) or turn-
based. Here the player normally only indirectly
controls the character in the game but he does set
out the strategies that the characters need to follow.
Examples include Age of Empires, Caesar, Theme

Park, and other city or empire building games. Strategy
games most of the time use an isometric view. They
take a lot of time to create because they require many
different game objects, like characters and buildings,
that all need their own animated images and specific
behavior. Many GOD games can be considered as
strategy games as well.

Adventure games, where the story line is rather crucial.
Most adventure games are largely 2-dimensional and
use the well-known point-and-click interface. The
difficulty in creating an adventure game does not lie in
the actions but in creating an interesting, funny, and
surprising story line and in creating the corresponding
artwork. You really need to be an artist for this.
First-person shooters, which can be seen as the 3-
dimensional version of the old arcade games. Here
the emphasis is on fast-paced action and reaction
speed, not on cleverness and puzzle solving. Famous
examples are obviously Doom and Quake but huge
numbers have been created. First person shooters
need a 3-dimensional world to create the feeling of
being there.
Third-person shooters, where the player directly
controls a game character through a hostile world. A
clear example is Tomb Raider. The main difference
with role playing games is that there is not much
emphasis on character development. It is more a matter
of fast action and discovering the game world. Many
third-person shooters also have a storyline and borrow
aspects from adventure games. Third-person shooters
do not need to be 3-dimensional (think for example of
GTA) and can be create with relative easy.

27
Sport games, in which an existing sport, like soccer
or baseball is simulated. Many such games exist but
they are often rather boring. Creating a convincing
and fun-to-play sport game is a big challenge.
Racing games are in some sense a special type of
sport game. Because there are so many of them
they deserve a category of their own. Some racing
games, like for example many Formula-1 games, try
to model the driving of a car as perfect as possible.
Other games are more arcade style and make racing
very easy. Racing games can be both 2-dimensional
and 3-dimensional. One of the major challenges
when making a racing game is to create convincing
racing of the computer control led cars.
Simulators, like flight simulators. Such games try
to realistically simulate some mechanism, like a
plane. They are popular because people like to
understand how such systems work and like to be
able to control them. Creating simulators is rather
difficult because they must be convincing.

Clearly we did not cover all types of games in this
list but it at least gives you some indication of the
various genres.

You can of course produce a game that has aspects
of different genres, but you should be careful with
this. The player picks a game from a particular genre
because he likes that genre. For example, assume
that you, as a designer, decided to create an
adventure game with some added action. Somewhere
in the game the main character has to move to a
different city and for this he has to steel a car. Chased
by the police the player has to race to the next city,
avoiding being caught. This may sound like fun, but
be careful. A player that chooses an adventure game
likes the story aspect, the fact that he has to solve
complicated puzzles, and the fact that he can take
his time and is not hurried. The racing part suddenly
requires him to play a completely different type of
game in which reaction speed counts much more
than clever thinking. Probably this is not his type of
game and he might be unable to finish the race and
will stop playing the game. Similar problems occur
for example when combining strategy games with
first person shooting action. So best pick your genre
and stick to it for the whole game.

Learn from other people

This tutorial should have given you a rough idea of the
things that matter when trying to create a good computer
game. But in the end the best way to learn is to do it
yourself and to critically look at your results.

Another piece of advice that I would like to give you is
to learn from other people's mistakes. Whenever you
plan to make a particular type of game, look at similar
games. Play them and see what they did right and
what they did wrong. It is amazing to see how often
people repeat mistakes made by others before them.

There is a lot of information on game design available
on the web and is this tutorial I borrowed a lot of
information from these sources. You are strongly
encourages to read some of the articles experienced
game designers have written. For some links to get
you started, see the links page of the Game Maker
web site:

Game Maker Web Site

Morphosis Says
“Check These Out”

The Art of Computer Game Design

Quotes on Game Design

Game Design: Theory & Practice

History of Computer Game Design:

http://www.gamemaker.nl/
http://www.gamemaker.nl/
http://www.gamemaker.nl/
http://www.vancouver.wsu.edu/fac/peabody/game-book/Coverpage.html
http://www.randomterrain.com/gamedesign/index.html
http://www.paranoidproductions.com/gamedesign/
http://www.stanford.edu/class/sts145/

In The Spot Light
By Morphosis

Interview with “Freegadgets”

28

What was the first 3D encounter you came in contact with?
I was taking drafting is high school, designing floor plans for houses. I wanted to draw my plans in
3D so I made a simple 3D engine on the C-64. I would type in the x, y, z of a point and it would in
return tell me where to plot that point on a sheet of paper. I could then connect the points using a
ruler, it was a slow process. I used light blue and red pencil crayons to draw pictures that would pop
off the page with 3D glasses. I actually went from store to store wearing 3D glasses to find the right
colors, I was a strange kid.

Many people know of him and his work with Game
Maker and the creation of a 3D like game. You
may have seen some of his games and asked how
in the heck was that done. You may have traveled
to his website and downloaded the tutorials for
creating a 3D like game. But what you may have
not done was to get to know a little background
on the character. Well I asked him to interview him
and with excitement he replied quickly with an
interview and screenshots of his new projects. Nice photo of him I made into a 3D look.

It’s him don’t you think?

When was the first time you knew you wanted to use a computer?
I pretty much grew up with computers. We got the first one when
I was about 6, it was an Odyssey, then came the VIC-20, the
Commodore 64 and so on. I started making video games on
the Commodore 64 when I was 11, mostly platform and space
games.

When did you first find out about Game Maker and how did you
hear about it?

I was off work with a shattered wrist. Nine months in recovery
and I was bored out of my skull. Remembering how much fun

it was to make games on the old C-64, I did a search. The exact phrase was “Game Maker” and
Mark’s site was top of the list.

What was the first game you made with Game Maker?
Finished my first game Mental Block, about a month after
downloading Game Maker. It’s actually a remake of a game
I made for the C-64 many years ago. It did well in the
competition and is still on the GM games page. I put it on
download.com where it received over 8,000 downloads and
growing.

29
I started the first 3D engine a little over a month after downloading Game Maker. It took less than a
week to make and was done using all drag and drop icons. It took a little longer to make the demo
for it which is also on the GM games page. It was made using nothing but 2D sprites drawn to scale,
no walls, no panoramic backgrounds. My engine has come a long way.

Why did you want to try to emulate a 3D look in Game Maker?
I wasn’t trying to make a game or anything, it was an experiment, just to see if I could do it. When
I announced I was building a 3D engine with GM, I got a lot of criticism. My favorite remark was
“big foot, tooth fiery, 3D in Game Maker” or something to that effect. If anything, the criticism made
me work harder, Thanks Guys!

Do you think 3D is needed in a game?
Certainly not in every game, but there are some types of games
that just can’t be done in 2D. Many classic 2D games could benefit
from that 3rd dimension.

What are some benefits of 3D over 2d?
In a top-down game the person playing can see everything, it’s a
God-like perspective. If there are walls, how does Pac-Man know
exactly where all the ghosts are? Not knowing what might be

 lurking around the corner can give a more intense realistic feel. It’s also easier to show objects at different
heights, this is very hard to do in a top-down game. In a 2D game your basically stuck with objects that only
move 2 dimensionally.

In creation of a 3D like game, what is the most difficult thing to do? Is it the programming, Graphics, or
something else?

Obviously building my 3D engine was fairly hard, using it to make games takes some getting used
to but it’s not unlike building a top down game. I think the hardest part is finding the graphics. To make
your own original graphics you would likely need to use a 3D modeler which can be tricky. It is for that
reason I’ll be adding a lot of graphics to my site, some ripped from games, and later some original
stuff made by me and other members. www.lexdark.com/freegadgets/

Do you make any other 3D games with other software designed for the creation of making a 3D game?
No, I have tried many of the 3D game makers out there like 3D Rad and Blender, but they are not
user friendly. Most require you to know a lot of code or cost a lot of money. I consider myself a fairly
intelligent guy, so if I can’t get anywhere with these programs, I think few people will. There is a real
need for an easy to use 3D game maker. There are so many websites out there devoted to re-skinning
Doom for example. I believe these people would prefer to design their own weapons and A.I. if they
had the chance. Making games should be fun, that’s why I do it. I’d rather use a program that’s only
capable of basic old school 3D, than one with all the features but is so aggravating it takes all the fun
out of it.

And last, will you continue to experiment with 3D and Game Maker?
This month I’ll be releasing a new and improved version of my 3D engine, I’m calling Gadget 3D. It
will take 3D rendered in Game Maker about as far as it can currently go. From then on I will focus
on writing the tutorials, making graphics, and of course games! My game Doomed which many of you
have already had a chance to sample, should be finished this month as well.
If Mark decides to add new features to Game Maker such as textured polygons, I’ll of course add them
to my engine and write up the tutorials. Rather than pester Mark about it, I suggest people show an
interest in 3D. I’m willing to help people with their projects, you can also help me by contributing
graphics, demos, and tutorials for my website.

Freegadgets Vs Xception
By Curtis LeMay

The 3D War

30

Since Gm’s beginning, 3D engines have been slow to develop and rarely proved to work well. Top-down games
have dominated the GM world, simply because there were no easy-to-use 3D engines. That is, until now. Enter
Freegadget’s and Xception’s engines. A new leaf has turned in GM; a new realm for developers to explore.

Comparing the engines
At first look, the engines seem very much alike. Not so. The deeper you dig into them, the more you realize
how different they really are. Time for a quick engine comparison…..

Freegadget’s Doom Spinoff

Xception’s DLL at work

Because Freegadget’s DLL uses images already in the .gmd, the 3D effect
is attained by scaling. Though this scaling effect is used well to make it seem
that you are actually moving through the levels, in actuality, the walls are
moving to you. The closer you get, the more pixilated the walls become.
However, in Xception’s DLL, images are loaded externally, meaning that they
stay the same no matter where you are, but from a distance away they seem
somewhat blurry. Overall, Xception takes the ball on faster computers.

Graphics

Yes, the way an engine is built does affect what you can make with it. Xception’s
does allow you to change wall size, textures, and coordinates very quickly and
efficiently. But Freegadget’s has many of the same features. Freegadgets
also can make cooler-looking buildings. Freegadgets actually takes the level
design category

Level Design

Speed may be an issue with some people. Freegadget’s runs everything
internally-a modern wonder (that isn’t counting the DLL). Though this
may look appealing in a folder, it doesn’t help the game speed. Xception’s
runs images externally, but when a room is loading up, it has to load in
the images. The images ARE crystal clear, but there is a definite speed
advantage between rooms in the two engines. In our speed tests with
5000*5000 rooms, Freegadget’s loaded almost 5 seconds faster than
Xcept ion’s every s ingle t ime. Advantage Freegadgets.

Loading Speed

Freegadget’s uses many variables and scripts to run levels. These scripts
and variables aren’t the easiest things to specify either. Xception’s is way
easier to use. A few lines of code using Xception’s may produce a wall.
 To do the same in Freegadget’s, you may need to use 10 variables and
a few scripts. Plus, Xception’s has md2 and 3ds compatibility, meaning
you can use old Quake 2 skins and scenery files. Xception scores again.

Ease of Use

31

Because images load internally in Freegadget’s, people cannot customize the
levels in a standalone version of a game. With Xception’s, and walls, floors, and
roofs can be changed as easily as opening an image in paint and changing it.
3ds shapes can be changed from hills to houses, and enemies from monsters
into Pokemon. With all these possibilities, Xception takes the win.

Customizability

With all its power, the limiting factor with Xception’s engine may be the steeper
system requirements. However, granted you have a newer PC, it is the winner.
 Not to say in any way that Freegadgets has made a bad engine, but it does not
yield the great graphics and customizability that are almost a given in today’s
times. Both of these engines have unlimited possibilities, though, and I hope
that they continue to improve. With the arrival of GM 5, maybe these engines
can take it a step further as far as engine uses and graphical works. They can
also get faster. Freegadget’s is most compared to the first Doom, given the
demo’s that have come off of it so far. Xception’s is pretty much a better-looking
Doom. Expect to see the 3D invasion by June of this year. A few additions to
both engines will produce many good 3D games.

One thing is certain at this point. The days of only seeing 2D games are
numbered. The pioneers of 3D games in GM have blazed a clear trail, and in
a little while the common people will follow. The realm has been entered. It is
time for change in GM.

Conclusion

Curtis LeMay

:Email:

cjlemay@cox.net

:Web site:

www.planetearth.tk

http://galileo.spaceports.com/~eaxzone/matchcatch.html

Tools of the trade
By Morphosis and various sources.

GMDM’s Top “3” 3D Software

32

3D Studio Max

3D Studio Max 4 is a substantial new upgrade to
the famed 3D production tool. Max has always
been the games designer ’s favorite 3D
application, though as time goes by Discreet
doubtless feels its grip on the games market
gradually becoming more tenuous.

Max has always relied on complex procedural
tools and a rather convoluted work flow. Modeling
operations, effects, and utilities are
layered in the Modifier Stack which, while offering
a sort of construction history, makes working with
Max a very disjointed affair. Version 4 has
gone some way to improving things thanks to a
new pop-up menu system, called the ‘Quad menu’
– similar to the Hot Box and marking menu system
in Maya. There’s also a new polygon-modeling
system, which makes you wonder how Max was
so successful in games before. The new Polygon
Object gives you access to a true polygon
modeling toolset. You can access the various
modeling functions from the Quad menu, though
the toolset is not as comprehensive as some of
the other packages we have on test here.
The new IK system is impressive and much
improved over previous versions. Bones can be
displayed with fins which help define the volume
of the object. This is useful, and as they act as
real objects they can be rendered for fast previews.
Any object can become a bone, so you can use
Max’s modeling tools to build a custom skeleton
structure.

The limb solver is a two-bone IK solver
specifically designed for games production,
since it can be modified for use in a games
engine. FK and IK can be mixed and blended
on the same IK chain using key frames.
Skinning – the binding of a character model to
a jointed skeleton – has also been improved.
The Morph Angle Deformer lets you create
bulges and skin deformations based on bone
angles. You have to make a duplicate of the
geometry, though, so it’s not as elegant as is
could be. The best workflow enhancements are
the Custom Attributes and Parameter Wiring
features. Custom Attributes are custom UI
widgets, sliders and the like that control animated
parameters and are displayed right in the view
ports. Rather than having to hunt for the
parameter in the modifier stack, all the animated
parameters can be in one place.

Wiring lets you link animated parameters
together – and combined with expressions, add
a lot more power to Max’s animation toolset.
Max 4 is undoubtedly a great system for games
development. However, despite the advances
and the large user base, Max remains
a powerful yet inelegantly designed system.

1 3D
 S

TU
D

IO
 M

A
X

Price: $995.00 US

33

Maya

There are three versions of Maya: Complete,
Unlimited, and Builder. Complete is the base
version featuring advanced character animation
tools, NURBS and polygon modeling and
sophisticated rendering. Unlimited adds Cloth,
Fur and Subdivision Surfaces to this package.
Builder, of interest here, is a stripped down
version geared towards game development.
While it lacks rendering and NURBS modeling,
there’s a single two-bone IK solver that’s ideal
for game characters (the source code of which
is included and can be integrated into a games
engine). As you’d expect, Builder is also much
cheaper than Maya Complete and, at around
$2,000, represents good value for money.
It has the full complement of polygon modeling
and texturing tools found in Complete, which
includes UV editing and 3D painting. Multiple
textures and lighting (including shadows) can
be ‘burned’ into an object’s UV texture map
allowing for rich effects and environments to be
created with no extra overhead.

Where Maya 3.0 scores highly for games is with
MEL scripting (Maya Embedded Language).
MEL lets programmers create their own UI
elements to help manage the creation of multiple
levels and provide access to the full Maya API
(Application Program Interface). Artistically Maya
scores highly too. The interface is fully
customizable, and it’s generally easy to use.
Maya Complete features more sophisticated IK

solvers – including an IK Spline handle that’s
ideal for animating multi-jointed or tentacle-like
creatures. Attaching skin to a skeleton is easy,
and editing joint weights can be done visually
by paint ing on the object ’s surface.
The painting interface, called Artisan, extends
much further than this. You can paint-select
objects and components, sculpt surfaces like
clay (also available in Builder), and use Paint
FX. The polygon tools are good, and thanks to
Maya’s Construction History, you can reach
back to any previous step to make changes.
This offers plenty of opportunity for creating
versions of a single model to create different
characters for a game. Like XSI, Maya features
non-linear animation – extremely useful for
game development, since you can build up a
library of animation clips that can be
reused and accessed by all animators in a
workgroup. Maya is an except ional
package that offers several levels of
sophistication and price points for game
producers. Builder can be used to create levels
and environments, build characters and for
simple animation, while Complete and even
Unlimited can be used for more complex work
in the game – and of course for an FMV. It
may not be cheap, but for most of us Maya is
all the animation software we’ll ever need.

2 M
A

YA

Price: $2,180 US

34

Lightwave

LightWave is a solid 3D program with a
considerable history of achievements. Its credits
span film and broadcast – and, of course, game
production. LightWave has an excellent modeler
that’s mainly polygon based, so it’s ideal for
creating models for games. The polygon toolset
is vast and extremely versatile, with excellent
control over the finest details of poly modeling.
There are other available options, of course,
such as procedural primitives (generated as
polygon meshes), metaballs and MetaNURBS,
which are LightWave’s version of subdivision
surfaces.

MetaNURBS can convert models that contain
three- and four-point polygons and subdivide
them to form smooth surfaces. Unlike XSI, you’re
limited to just these three- or four-points – any
more or less and MetaNURBS will fail to convert.
They are, however, very f lexible and
feature weight painting that lets you vary the
influence of points in the control cage over the
subdivided surface. LightWave 6.5 has good UV
editing, and there are some nice extras like per-
polygon UV mapping too.

Animation is good, although there’s no non-linear
animation as yet. Soft body dynamics are
courtesy of the Motion Designer 2000 plug-in,
and there’s good expressions and a function-
curve editor. The IK system is also good and
skeleton setup has been made easier thanks to

Skeletons, special polygons assembled in
Modeler that can be converted to bones in
Layout. LightWave has an excellent raytrace
render capable of stunning output and very
sophisticated effects. Hypervoxels is LightWave’s
technology for creating realistic volumetric
effects, and there’s also radiosity and caustics
should you need them. For all aspects of games
production – including in-game video –
LightWave is a worthy option. It offers a more
hands-on approach and in many situations,
such as for modeling, this is no bad thing.

3

First there was the graphics-impaired Adventure
by Crowther and Woods, then there was Atari’s
masterpiece of minimalist gaming, Pong. At the
time, of course, it was mesmerizing, and soon
we had Asteroidsand Space Invaders,which were
even more beguiling. The games industry and
the games it produced have certainly come a
long way since then, and so have the tools used
to create them. Intense graphics and realistic
motion coupled with impressive effects and audio
are the going commodity in today’s games.

For years the games industry has been
dominated by 3D Studio Max, and there are still
many staunch Max supporters, there has been
a trend away from it and towards the seemingly
unstoppable force of Maya. Although almost any
polygon-based 3D program can be used for
modeling for games, some are better suited than
others. As computers and consoles become
more powerful, the restrictions on polygon counts
will be less severe. Games will become more
interactive and yet look as realistic as a movie,
so the ideal games system for the coming future
will combine the efficient heritage of games
production with the no-compromise toolset of
film effects and character animation. Graphics
cards such as the new GeForce 3 – which can
render high-resolution characters and produce
near broadcast-quality effects and imagery in
real-time – demonstrate that things are changing

LIG
H

TW
A

V
E

Price: $795.00 US

35
By DT

GML Editor with the Dragon’s Touch

Dragon Script Lite

Dynamic Terminology was an unofficial (yet very powerful)
GML editor developed by one of GMC administrators, DT,
which made its first appearance to the public on January
25th, 2003 as a beta release. It has been downloaded
hundred of times since its first debut. However, statistics
still weren’t very ideal then because of the lack of close
integration between the program and GM. People want to
avoid the hassle of using an external editor, because it
requires the unnecessary effort to paste it into GM. But
now, all hesitation aside, for the creator of GM himself has
added the option for external script editor support, which
is how project DSL (Dragon Script Lite) was born.
A great deal of care has been put into the development of DSL. Its user-friendly interface closely resembles
GM’s, eliminating productive time being spent on manual reading. Even with a simple interface, its power will
not be compromised; its functionality will easily surpass all competitions (including the official built in editor
of GM). Despite the fact that the program’s name consisted of the word "lite", in this case it means "light", as
in small and compact. Recycling the same robust syntax parsing engine as its predecessor, DSL will feature
all the core functions of DT’s plus more extras. For more information on what the changes are, please see the

Changes - Quick Glance
Syntax Highlighter
Code coloring has been completely rewritten from
scratch to fully support the GML syntax to the core.
The current grammar file comprised of over 3000
lines of raw coding, the most comprehensive version
yet. It can handle GML elements even better than
GM’s itself can!
Graphical Interface
The program’s GUI has been painstakingly designed
over and over again, dynamically as well as on
papers to find the simplest yet elegant layout.
Modeled to closely resemble GM’s, anyone should
be able to just pickup and use it right off the package,
without the need for tedious manual reading.

Execution Speed & Size
Optimized to consume the least memory as possible and because it’s "lite", its execution speed is vastly improved.
Code Proposal & Hinting
One of the many highlights of Dynamic Terminology was the syntax proposal and hinting, as a result this department
was carefully adjusted to better suit with the global design. The hint-lookup is no longer restricted to GML functions,
but has expanded to other GML related elements as well.
Many Smaller Changes
Such as less clustering in the preferences, actions being more responsive, auto completion and completion are
under fine-tuning, more depth to syntax coloring configuration, etc...
Release Plan:Atmost,no later than a week after GM5's stable release.
http://dsl.gmcommunity.com/

http://directory.gmcommunity.com
http://dsl.gmcommunity.com/

Reviews
By Morphosis

Cool games to be or not to be?

36

9.59.5

6.56.5

9.09.0

Aliens Attack On Colony

Jetz Rampage

Ore no Ryom

Grzegorz Borkowsk Click Here For Web Site

Shawn 64’s Creations Click Here For Web Site

Vertigo Games Click Here For Web Site

By far on of the largest GM games that I have ever downloaded.
With the wait of this 30meg game, I soon realized it was well
worth it.

This Gory and eerie alien sci-fi action game is filled with
excitement, great sounds, good graphics, and good game play.
The story line is that from an alien sci-fi movie packed with 9
types of weapons and explosives. If you are a fan of a good
gory overhead game give it a shot. I was rather impressed with
the game and you may be too. If you like SNES Blackthorn,
Fallout, X-Com, and PSX Project Overkill, that’s a sign you’ll
like this. The downfall, some menu items do not function, but
this doesn’t hinder the game.

An interesting game mixed with humor, action, and a touch of
gore, well a little more than a touch. This side scroller is one
of the more interesting side scrollers I have played. The character
movement alone makes it fun, not to mention how the character
is strapped with a gun and grenades with only one goal,
destruction.

The graphics are done really well and the sounds from the TV
show south park make you laugh. This bizarre game and theme
may seem violent, but it’s fun, at least to me. I do recommend
for you to check this out.

“The Customer is always right” that is what you have to say
when playing this game. It’s a great restaurant simulation game
where you have to serve the customers food and drinks, and
if you give them what they ordered you’ll make money. But if
you mess up an order, you loose money. From pizza to a frosty
beverage and even washing the dishes, this game will make
you laugh and keeps you on your toes. The game has three
game modes to play, a nice tutorial mode, franchise mode,
and arcade mode.

Good sounds and music but the graphics are a bit weak and
could be improved, but the game play and fun theme make it
a winner. Get this!

* I Need people to review games,
contact me for info and guidelines.

http://www.aliensaoc.prv.pl
http://www.geocities.com/s64games/index.html
http://members.lycos.co.uk/vertigogames/games.htm

Development Misc.
By Chris Spicer

Teh Noob, part 2 of my development diary

37

Hello everyone! I am Teh Noob, and welcome to part
2 of my development diary!

Apparently, this diary is being published in a GM
Magazine! See? I've only been using GM for five minutes
and already I'm famous! To celebrate, I've drawn a cool
new logo for my column! I made it entirely in GM's own
graphics editor - isn't it great?!? It took me five minutes
- I've never spent that long on my graphics before!

I must be famous - someone sent me an email about
the last issue!!! After I said I was a l33t H@x0r, they
wanted to know what hacking
I've done! Well, one time I asked my friend what his
computer password was at school, and I went onto the
network and changed his desktop to a picture I'd drawn
saying "I am a loser!" See? What did I tell you? Beware
my digital fury!!! Anyway, remember how in the last
column I said I'd have my first game finished for this
issue? Well, I did it! Unfortunately, my RPG, Soul Strike:
Legend of the Vengeance Demon (final title still pending),
has been put on hold due to Technical Issues with the
3D engine (because at the moment it still doesn't have
one), but I still completed my first game! I couldn't be
bothered to learn all that complicated drag-and-drop
stuff (I thought GM was supposed to be easy!) so
instead I based my game around one of the example
games that came with GM called Click The Ball. Click
The Ball isn't very good, but I did loads of work on my
version and now it's almost unrecognisable! My game
is called Kill The Ball. See? Completely different!!!

In the original game there were these balls bouncing
around and you clicked on them to make them disappear
- totally lame! My game is much better. In my game
there are these balls floating around and you click on

them to KILL them!!! It's great, when you click on them
there's blood everywhere and everything!!!! I drew all
the graphics myself, except for the ones I took from the
original game.

Anyway, my game is so cool that I submitted it to a
review website and tomorrow I'm going to email it to all
the games magazines. Depending on how good they
think it is, I might start charging for it as a shareware
game! (Don't worry, I'll make sure I give out a secret
link so all my loyal readers can download it for free!!!)

Those l@amers at the GM Community are still all
l@merz, though! I told them all about my game, and
they were all d1ss1ng me! This one guy was like "All
you did was edit the lame Click The Ball example that
came with GM!" I mean, DUH! Of COURSE that's what
I did! He says it like it's a bad thing!

Just enough time to tell you about my next game. I've
decided to scrap all those games I planned last issue
- I decided there were too many 3D games around
already, it's not that I couldn't program them or anything
- and concentrate on something new. I want to make
something original and experimental, something that
will make people think "Wow, I've never seen anything
like that before, and certainly not made with GM!" So
I've decided to make a platform game.

I know what you're thinking, and you're right to be
excited!! I haven’t decided on a plot for the game yet,
and I don’t have any ideas for levels or characters at
the minute, but I do know one thing my game is going
to have: L33TNESS!!! Believe me, this is going to be
teh best GM platform game ever! Without a doubt!
Nothing can prevent it!

Until next time, remember: I’m GREAT!!!1!

Noob Out!

Teh Noob’s development diary was transcribed by Chris
Spicer

